Coordinated Behavior
- What type of emergent behaviors arise from groups of agents?
 - Individual agent frailty requires groups of coordinating agents
 - Malleable agent adaptation
 - Autonomous talent-balancing – agent drops some of its functionality because too many other agents can do it
 - Application survivability – what is the minimum number of agents required to ensure the clique survives?

Exploratory Behavior
- How does an agent explore a network?
 - Content-based remotely accessible shared memory
 - Remote communication vs. agent migration
 - Agent sleep schedule

Malleable Behavior
- How does an agent adapt to a changing context?
 - Agent instruction morphing
 - Dynamic instruction set
 - Agent reflection – so an agent can determine what code it has and what it needs

Clique Behavior
- What type of emergent behaviors arise from groups of agents?
 - Individual agent frailty requires groups of coordinating agents
 - Malleable agent adaptation
 - Autonomous talent-balancing – agent drops some of its functionality because too many other agents can do it
 - Application survivability – what is the minimum number of agents required to ensure the clique survives?

Coordinated Behavior
- How do agents coordinate?
 - Primitive abstractions supporting high-level decoupled interactions
 - E.g., shared tuple spaces
 - The choice of a coordination model for sensor networks is an open question

Research Implications
- Spatiotemporal Behavior
 - What type of spatiotemporal behaviors do applications exhibit?
 - Agents must be present at a certain time & place to perform
 - Applications tentatively categorized into 3 spatial structures:
 1. Sparse - Agents coordinate over large distances
 2. Compact - Agents are all located in the same general area
 3. Geometric - Agents must maintain a geometric shape, e.g., a circle around an intruder

- Security
 - How do we deal with malicious agents and privacy?
 - Lightweight mechanisms required
 - Virtual machine "sandbox"
 - Coordinated message scattering and collection

- Integration with IP Networks

- Container Security and Tracking

- Fire Tracking

- Habitat Monitoring

- IP Network

Experimental Test Bed
- Implemented on MicaZ, ported to MicaZ, and MIRACL Days25 motes
- TinyOS 1.1.14, NesC 1.2
- 4 Agents/mote
- 100 byte tuple space
- 46K ROM, 3.3K RAM
- Integrated with the Cricket Indoor Localization System

Performance Evaluation
- Migration instructions are more reliable because of hop-by-hop acknowledgements...
- …but remote tuple space operations have less overhead

This research is supported by the NSF under NOSS contract CNS-0520220