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Abstract. The practice of using workflows to model complex activities
in stable networks is commonplace and is supported by many commer-
cially available workflow management systems (WfMSs). However, the
use of workflows to model collaborative activities in mobile environments,
while possible at the model level, has not gained traction due to the lack
of a suitable WfMS for mobile networks and devices. This paper seeks
to address this need. We present CiAN, a choreography-based workflow
engine that is designed with MANETs in mind. We describe the de-
sign, architecture, and communication protocols used by CiAN as well
as its implementation using Java. An evaluation of the communication
protocol used to coordinate among various workflow participants across
MANETs is also presented.

1 Introduction

Workflows can be conceptualized as a set of related tasks that are arranged ac-
cording to a specific order and structure to accomplish a higher level goal in
a collaborative manner. Workflows are commonly represented and specified in
terms of graphs or petri-nets [23]. Software systems that execute these workflow
specifications are called Workflow Management Systems (WfMSs). In the current
state of the art, WfMSs such as ActiveBPEL [9], Oracle Workflow Engine [18],
Biztalk [7], etc. operate across wired networks and execute workflows that en-
code complex business processes such as insurance claims processing, inventory
control, loan approvals, among others.

A WfMS has two main functions: assigning tasks in the workflow to suitable
hosts and subsequently invoking them in the correct order, passing any data or
notifications between them as necessary. The performance of all the tasks by
multiple participants collectively accomplishes the collaborative activity speci-
fied by the workflow. Current designs for WfMSs reflect the stable and reliable
environment in which they operate. The architecture of these systems are cen-
tralized and interactions with the various distributed components are typically
synchronous calls made “just-in-time”.

In this paper, we describe the design of a WfMS targeted to mobile settings.
Our work is motivated by the fact that while the workflow model is robust
enough to describe more expansive forms of collaborations (including collabo-
rations involving both humans and software in the physical world), it is not in
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widespread use due to the lack of a suitable WfMS to execute such workflows. A
mobile WfMS that can operate over a mobile ad hoc network (MANET) can be
used as a general purpose coordination mechanism for the activities of workers
at a remote outdoor construction site, management of emergency responders in
the event of a toxic chemical spill, or directing the activities of a geological sur-
vey team where setting up a traditional WfMS over a temporary LAN, even if
possible, is not desirable.

However, developing a WfMS for MANETs has several implications, the most
significant of which is the paradigm shift from centralized management to a
distributed management scheme. In addition, appropriate communication and
coordination protocols need to be developed so that participants can interact
over a dynamic and fragmented network. CiAN, which stands for Collaboration
in Ad hoc Networks, is a clean sheet approach to building a WfMS that is flex-
ible enough to operate across a MANET. CiAN is designed from the ground
up to function in a choreographed manner, i.e., in a manner that does not re-
quire a central coordinating entity. Novel features of CiAN include a distributed
management system that functions at the level of granularity of a single task,
a communication protocol that combines publish-subscribe, store-and-forward,
and content-based routing to foster communication across the MANET between
various hosts performing the workflow, and an ability to adapt the workflow ex-
ecution according to changes in the context in which the execution takes place.

2 Background

Before we present the features of our system in detail, we describe precisely our
target environment and the differences between operating in a choreographed
manner as opposed to the more commonplace orchestrated manner.

For CiAN, we assume that there exists a group of human users, each of whom is
equipped with a relatively powerful mobile computing device (in the remainder of
the paper we refer to the device and user collectively as a host). We assume that
all hosts are co-located initially but may separate once the workflow execution
has begun. Since the devices are carried on the person of the users, we assume
that the devices are physically mobile and that their motion pattern is the same
as their associated user. The devices are capable of communicating with each
other using 802.11b/g/n radios when they are within communication range of
each other. However, such windows of communication (the intervals of time
during which a pair of hosts are within range) may be transient due to the
mobility of the associated human user.

Each host that participates in the execution of a workflow provides: (1) A
name, assumed to be unique in the network, (2) A schedule with entries that
indicate when it is not available. Each entry consists of a start time, location at
the start time, end time, and location at the end time. When hosts are assigned
tasks, they add them to their schedule so that they are not assigned additional
tasks that conflict, and (3) A list of services offered. This list includes software
services on the mobile devices and the associated user’s capabilities, e.g., a metal
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Fig. 1. Orchestration vs. Choreography (SVC = Service & WFMS = Workflow Mgmt.
System.

worker may have welding capabilities. We assume that each host maintains a
local knowledge base [12] in which it keeps information about other hosts in the
network. Initially the knowledge base contains information only about the local
host. However, over time, the knowledge base is populated with information
about other hosts when pairs of hosts are within communication range of each
other via a gossiping protocol. The contents of the knowledge base can be queried
by other components of the middleware. It should be noted that due to all hosts
being co-located initially, each host has knowledge of all others in the network.
However, future updates to host knowledge are dispersed via gossiping which
may lead to asymmetric information in the network.

Since there is no central coordinating entity in this environment, all man-
agement functions must be handled in a distributed manner. This requires the
execution model to be choreographed. In choreography, the responsibility for exe-
cuting the workflow is divided up a priori by an allocation algorithm (not covered
in this paper. Please refer to [25]). The various participants then interact with
each other directly via a peer-to-peer model using pre-established standardized
protocols. This is in sharp contrast to the more common orchestrated architec-
ture where a centralized entity is responsible for executing the entire workflow
and synchronously invokes services (in workflow order) to complete tasks. The
differences between these approaches are shown pictorially in Figure 1.

The following section describes our design for a choreography-based WfMS
along with the communication protocols for communicating with various com-
ponents across the MANET.

3 System Design

According to the W3C definition, choreography “defines re-usable common rules
that govern the ordering of exchanged messages, and the provisioning patterns
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of collaborative behavior, as agreed upon between two or more interacting par-
ticipants.”. In the context of our WfMS, this translates to the allocation of
tasks to hosts (which in combination with the workflow structure describes the
agreed upon collaboration patterns among participating hosts) while the exe-
cution engine is responsible for implementing the rules and protocols governing
the exchange of messages. To keep these two concerns separate, CiAN operates
in two modes: (1) planning - which is used to allocate tasks in the workflow and
(2) standard - which is used by the hosts whose responsibility is to perform the
tasks that have been allocated to it. This paper focusses on the standard mode.
We include a brief presentation of the planning mode for completeness.

3.1 CiAN in Planning Mode

The Planning Mode of CiAN is responsible for implementing a scheme to inform
each participating host of its role in the overall workflow. If the allocation of tasks
is being done centrally, a single host operates in planning mode (hereinafter re-
ferred to simply as the planning host) and runs a centralized allocation algorithm
[13] which allocates individual tasks to hosts. If the allocation of tasks is being
done in a distributed manner [25], then several hosts run in planning mode. The
host that initiates the workflow is responsible for fragmenting the workflow and
passing it to the other hosts running in planning mode along with a set of rules
for task allocation. For the purposes of our discussion, we will assume that the
allocation process is centralized followed by a distributed, choreographed exe-
cution. It should also be noted that a host can run the planning and standard
modes of CiAN simultaneously, if it so desires.

The planning host allocates each task in the workflow to a suitable host,
where a suitable host is defined as a host whose capabilities are a superset of the
capability requirements of the task, and whose motion pattern allows it to be
at the location at which the task needs to be performed at the time it needs to
be performed. Figure 2 shows the system architecture on the planning host. An
external application injects the workflow specification into the planning system
by way of the Planner. The Planner passes this specification to the Allocator,
which runs an appropriate allocation algorithm (e.g., [13] or [25]) to determine
the hosts that are assigned to each task in the workflow. It then annotates the
specification with these allocations and returns it to the Planner. The Planner
then feeds the specification to the Route Information unit, which augments
the specification with metadata (used for data routing - described later in this
section). This augmented specification is then returned to the Planner which
now forwards it to the Specification Disbursement Policy module, which
breaks the workflow into its constituent tasks and sends each task specification
to the host that has been allocated to perform it using the Communication
Middleware. Each task specification sent out includes (1) the input edges to the
task, their merging and synchronization pattern [27], and the tasks at the source
of the edges, (2) the service that must be invoked for that task, and (3) the
output edges to the task, their splitting and synchronization pattern [27], and
the tasks at the sinks of the edges.
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Fig. 2. CiAN planning architecture

There are a few points to note in the figure. The components with dotted
borders are interfaces, i.e., they can be realized by alternate policies as long
as they meet the interface requirements. One simple example of this is the re-
placement of the Allocator which implements a centralized algorithm in our
description this far with one that sets up a distributed allocation policy. The
Allocator uses the schedule and service list provided by each host (stored in
the Knowledge Base as described in Section 2) to determine the allocation of
the tasks to hosts based on their capabilities and motion constraints. Recall that
since hosts are co-located initially, the planning host has access to information
about all participating hosts.

3.2 CiAN in Standard Mode

The Standard Mode of CiAN is responsible for managing the choreographed
execution of the workflow on individual hosts and then disbursing results to the
hosts that are responsible for executing subsequent tasks. At a high level, the
Standard Mode on a given host works as follows: (1) It waits for a task to be
allocated to the host on which it is executing. (2) When a task is allocated, it
receives the specification for that task and installs it within the system and goes
back to waiting (either on inputs to the task it has installed or additional task
allocations). (3) If an input to an installed task is received, it runs the input
synchronization logic for that task (see Figure 4). If the logic is satisfied, the
values received are passed to the task for execution. If not, then additional inputs
may be required and the system waits for these. (4) When the task execution
has been completed, it runs the output synchronization logic for that task and
transmits the values to the tasks at the sinks of the outgoing edges. We now
describe this process in detail.
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The architecture of CiAN in standard mode is shown in Figure 3. When the
task specification arrives, the Communication Module passes it to the Workflow
Router. The arrival of the specification is regarded as a control message, so
it is given to the Control Routing Policy module of the Workflow Router,
which in turn notifies any Control Listeners that may be listening for these
messages. The default Control Listener parses the task specification and cre-
ates a Service Manager for the task. The Service Manager contains the input
synchronization and output synchronization logic mentioned above, which are
parametrized according to the information in the task specification received. For
example, if a task has three incoming edges with AND join semantics, the input
synchronization logic would not be satisfied until it had received values from
all three edges. The Service Manager creates subscriptions for each of its in-
puts, which is a request for data generated by its preceding tasks (we will cover
subscriptions later in this section). At this point a task is waiting on its inputs
before it can start executing.
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The first task in any workflow by definition does not have any inputs, and
hence can start executing immediately. The Service Manager must invoke the
service that performs the activity associated with the task. In CiAN, we assume
that all services can be accessed via SOAP calls. The Service Manager calls
the SOAP Converter which converts the service call into a SOAP request. This
is then handed off to a SOAP Front End which receives the request and routes
it to the appropriate service. The response from the service is translated into a
SOAP response and returned to the Service Manager via the same route. At
this stage, the Service Manager executes output synchronization logic. If the
logic is satisfied, it passes the data to the Data Policy of the Workflow Router
which then transmits it to the host(s) that is(are) responsible for performing
the task(s) immediately following the first task. These tasks wait on their in-
puts and execute once all the inputs are available. Execution continues until the
last task in the workflow is executed. This is what creates the choreographed
form of workflow management in CiAN. Two points to note in addition: (1) The
pluggable components in the middleware allow easy extensibility and more im-
portantly allow the middleware to be customized as per the specific requirements
of the domain and (2) The SOAP interface to the services allows compatibility
with Web services.

Task
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Fig. 4. Task and synchronization logic

3.3 Communication in MANETs

Thus far, we have described how individual tasks get executed but have not
covered how the coordination of the hosts performing the tasks is handled. At
the coordination and communication layer, there are two key issues: (1) The hosts
are connected by a MANET, whose topology evolves rapidly over time and where
unpredictable disconnections are commonplace, making it difficult to maintain
long lasting routes between host pairs. (2) The workflow specification indicates
which task a result must be delivered to or obtained from but not the host that
is executing those tasks. We addressed these issues via a publish-subscribe-like
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protocol that opportunistically gossips data and subscriptions among hosts when
they are directly connected with each other. The scheme is described in detail
below.

The Communication Module on each host transmits a beacon periodically.
When the Communication Module on another host receives such a beacon, it
creates a Host Handler for that host. The Host Handler tries to establish a
direct connection between the hosts using TCP/IP streams. Thus, as long as
the hosts are in communication range, the Host Handler acts as the local proxy
of the remote host and handles communication between them. Since direct com-
munication is the most reliable and inexpensive form of communication in a
MANET, all information in CiAN is transmitted when two hosts are directly
connected. Thus, when the Host Handler establishes a connection, it synchro-
nizes the knowledge base of the two hosts using the time of acquisition of any
knowledge as a tie breaker. It also sends to and receives data or subscription
messages from the other host as appropriate. All data and subscription messages
received are passed to the Data Routing Policy in the Workflow Router. If a
data message is intended for a task on the local host, the Data Routing Policy
passes it to the Service Manager of the target task. The Service Manager then
runs the synchronization logic to see if a valid set of inputs have been received.

While this form of communication is acceptable for gossiping, it does not meet
all our requirements, specifically, it provides no means for a message exchange
to take place between two hosts that are never directly connected to each other.
This restriction can result in critical data from one task not reaching the next. A
simple solution to this problem is to simply address each message to its destina-
tion host and use a MANET routing protocol to deliver the message. However,
this has two drawbacks: (1) MANET routes do not last often and are expensive
to maintain, and (2) it strongly associates a task with a host, which while not
desirable is preferably avoided. Our approach is instead a store and forward ap-
proach based on a routing policy we have developed. At the planning stage, we
augment each task with a unique number (the metadata mentioned earlier) such
that it is greater than all its parents’ numbers but lesser than all its childrens’
(tasks that are siblings may have numbers lesser or greater depending on the
graph traversal method used). When each host receives a task spec, it assigns
a number to itself that is the same as the number of the task. If multiple tasks
are assigned, then it initially chooses the lowest numbered task. Once the task
associated with that number has been completed, it examines the remaining set
of tasks allocated to it and chooses the lowest number available. Subscriptions
(generated by tasks to solicit inputs) have the number of the subscribing task,
and the number of the task whose input is desired. Similarly, when a task finishes
execution, the data is labeled with the generating task number and the number
of the task(s) that should receive the data. The messages are routed using one
of the following three schemes: Scheme 1 - Data is routed to any host that has
a number between the generating task number and the target task number or
has no number in a strictly increasing fashion. Subscriptions are routed simi-
larly but in a strictly decreasing function. Routing to a host with no number
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is neither a decrease nor an increase. Scheme 2 - Data can be routed to any
host that has a number between the starting task number and the target task
number in a strictly increasing order. Subscriptions are routed to hosts between
the target task number and the ending task number. Routing to hosts without a
number is also permitted. Scheme 3 - This scheme is identical to Scheme 1 with
one exception. Any message can be routed outside the permissible range but
this triggers a counter. If the message moves to a host in range (as defined by
Scheme 1) before the counter expires, the counter is reset, otherwise the message
is destroyed.

Scheme 1 generates the lowest number of messages in the network but is
restrictive in the sense that the number of hosts that a message can be routed to
is much smaller than the total number of hosts collaborating. Scheme 2 increases
the permissible range but generates additional messages. Scheme 3 maintains the
low range of Scheme 1 but allows limited transgressions, which represents the
most favorable tradeoff between number of messages and number of hosts to
which the message can be routed. The use of task numbers for routing instead
of host names or IP addresses achieves the decoupling between tasks and hosts.

Thus, communication of data between a pair of hosts proceeds as follows: The
Service Manager on the receiving host issues a subscription for the data. When
the source host has finished executing the source task, the Service Manager on
that host creates a data message which it then passes to the Data Routing
Policy. At this stage, our publish-subscribe-like protocol takes over and gossips
it using one of the schemes described above. When a subscription and its corre-
sponding data “meet” on a host, a match is generated and the data forwarded
to the subscriber using AODV [22]. When the data is received on the receiving
host, it is passed to the Service Manager who then runs the synchronization
logic and invokes the next task.

3.4 Exploiting Mobility

Mobile systems work in a physical environment and it is desirable that these sys-
tems adapt their behavior to their environment. For WfMSs, this can be achieved
by the use of selection conditions. Each edge to a task may have one or more
selection conditions with one or more associated sub-conditions. If an edge has
at least one selection condition for which all its sub-conditions evaluate as true,
then the edge is marked active, otherwise the edge is marked as inactive. The
sub-conditions that make up the selection condition are of the form paramname,
comparator, valuewhere paramname can be the name of an edge, a parameter in
the local knowledge base, or the name of a sensor. For example sensor:velocity,
>, 10m/s tests if the velocity of the host is greater than 10m/s.

This type of support can be built through extensions to existing languages, or
a new language like the XML-based CiAN Workflow Specification which we are
developing (see mobilab.cse.wustl.edu/Projects/CiAN for more information).
Due to space constraints, it is not possible to describe all the tags in the CiAN
specification. A detailed explanation of all the specification features and examples
is available online at http://mobilab.cse.wustl.edu/Projects/CiAN.

mobilab.cse.wustl.edu/Projects/CiAN
http://mobilab.cse.wustl.edu/Projects/CiAN
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4 Evaluation

We implemented a prototype of the CiAN WfMS in Java. The calls to external
services are SOAP calls. To translate between the textual representation of the
input values and SOAP requests, we use kSOAP [17], a third party library.
The task of invoking the service and obtaining the return value is handled by
Sliver [10], a middleware developed in our lab. Sliver currently supports the
invocation of Java services only. However, since the request and response are
in the form of a SOAP message, CiAN can invoke services in another language
by simply adding a third party SOAP front end that is capable of invoking
services written in another language. In other words, CiAN can invoke any service
that can be invoked via SOAP calls if an appropriate front end is provided.
Hosts participating in the workflow can register their own front end with CiAN,
resulting in a situation where one host runs Java services while another runs
C++ services while a third might run both. Thus, CiAN is not restricted to
services written in any programming language. With the addition of language
specific parsers, CiAN can also support any workflow specification language.

In addition to our implementation, we measured the performance of our
publish-subscribe-like protocol to exchange data among hosts across a MANET.
This is the most crucial piece of the CiAN WfMS and its primary potential
bottleneck. Invocations of services to perform tasks do not take much time or
resources as they are local service calls. Rather, transmitting results and receiv-
ing inputs takes significantly more time due to the communication delays. We
refer to the time when tasks are being invoked and performed as relevant time
and the time spent getting the results of one task to another as overhead time.
Note that the system may be idle during relevant time periods (especially if the
task involves a human user doing some physical chore), but it is not considered
wasted time as a task is actually being performed. In our experiments, we fo-
cused on the overhead of our system since relevant time cannot be reduced due
to the task duration limits set in the workflow specification.

We simulated the performance of the communication module (which influences
the overhead values) using the NS2 network simulator. The transmission range
was set to 25m using the 2-ray ground propagation model and the 802.11b MAC
layer was used. Though the range of 802.11b can be higher than 25m, higher
ranges require more power, which is not desirable on power constrained mobile
devices. Host movement was modeled using the random waypoint mobility model
with hosts moving at a uniform speed of 1.7 m/s, which is close to human walking
speed.

With mobile hosts, it is not appropriate to compare performance as a function
of the number of hosts solely as additional factors are involved such as the
speed of the hosts and the total area that a group of hosts are responsible for.
Hence, we use a concept called upper bound coverage to determine the fraction
of the total area that is within communication range of at least one host in a
single second. The formula for coverage is (h/a)(π.r2 + 2.s.r) where h is the
number of hosts, a the total area, r the communication radius of hosts, and
s the speed of the hosts. The second term gives the instantaneous area that
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falls within the communication radius of a single host plus the differential area
covered in the second under consideration. This is multiplied by the number
of hosts to give the upper bound covered by all hosts and then divided by the
area to give a fraction in the range 0 ≤ coverage ≤ 1 with 1 indicating full
coverage and 0 indicating no coverage. The coverage upper bound is reached
only if every point in the area is covered exclusively by one host. In practice, the
coverage is lower than the upper bound due to certain points falling within the
range of more than one host. Holding area a constant, increasing the number
of hosts, speed or the communication radius influences coverage positively while
increasing area holding the other quantities constant influences the coverage
negatively. Intuitively, more coverage means that it is more likely for a host to
be at a particular location whereas less coverage indicates that a host is less
likely to be at a specific location. We used this environment to simulate the
execution of randomly generated workflows, the results of which appear below.
Each data point is an average of 30 runs.

Expt. 1 - Completing Workflows.In this experiment, we examined the influ-
ence of our protocols on workflow completion. As a baseline, we used a protocol
that delivers data and subscriptions directly without using intermediate hosts,
i.e., in a peer to peer manner during opportunistic encounters. We measured (1)
the number of tasks completed and (2) the number of tasks that failed due to
a communication error when using the baseline protocol as well as each of our
three schemes. The remaining tasks failed due to a dependency on the tasks that
failed due to communication errors. The results are shown in Figure 5. Each of our
schemes outperformed the baseline with Scheme 3 showing the best
performance. All schemes showed close to 100% completions when the coverage
was greater than 0.25. This illustrates that workflows are more likely to complete
when one of our schemes is used. In the case of the workflows that failed to com-
plete using our scheme, the reason was almost always due to aberrantmobility pat-
terns where a host isolated itself from the rest of the network. It should be noted
that we set an upper bound of 25000 seconds for each trial. This upper bound is
200% of the worst case time in which a workflow was actually completed.

Expt. 2 - Influence of Coverage on Overhead. Figure 6 shows the rela-
tion between coverage and overhead. Each data point is an average of executing
50 workflows. As can be seen, an increased coverage of the area in which the work-
flow is executing leads to lower overhead, primarily due to the availability of more
routing options. An interesting observation is that there was a lot of variance in
the data points for lower values of coverage. This can be explained as follows: the
coverage captures the area that a host “touches” over the interval of a second aver-
aged over all hosts participating in the workflow. When low coverage is prevalent,
hosts may cover a the “correct” subset of the total area in which a large fraction
of the workflow tasks must take place. This can result in low overhead. However,
if the hosts cover a different subset of the area that does not include many tasks
in the workflow, the overhead increases due to non-availability of hosts to perform
tasks or route results. The notion of “correct coverage” is inherently tied to the
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workflow being executed (different workflows need different subsets of the area
covered). Hence, coverage gives a sense of the performance but may be subject to
high variances at the bottom of the scale.
Expt. 3 - Influence of ’n’ on Scheme 3. Our final experiment involves a
deeper study of Scheme 3 of our routing protocol. In Scheme 3, data and subscrip-
tions are allowed to be routed outside their permitted range for a limited number
of hops, i.e., the value of ‘n’. In this experiment, we show the overhead of Scheme
3 with two values of ‘n’ - low and high. As can be seen in Figure 7, the value of
‘n’ did not significantly improve performance. The higher value of ‘n’ completed
on average only a few seconds faster. We attribute this small difference to the fact
that we chose environments where host density was not excessively sparse, and
the fact that hosts encountered each other sufficiently often to pass on messages.
We do expect to see a bigger difference for extremely low values of coverage.

Our results indicate that our routing protocol based on the task numbers
improves upon the performance of naive approaches in terms of workflow com-
pletions as well as the overhead associated with communication. In addition,
due to only a limited flooding of packets (within the range of task numbers),
the packets in the network are significantly lower, leading to reduced bandwidth
and power usage. These results are encouraging. However, we do intend to refine
our approach to achieve more efficiency in future work.

5 Related Work

A WfMS is the piece of software that executes a compatible workflow specifi-
cation. Today, innumerable WfMSs are available as both commercial and open
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source software such as FLOWer [3], AgentWork [20], Caramba [8], Groove [6],
and I-Flow [15]. ActiveBPEL [9], JBoss [19], Oracle Workflow Engine [18] are just
a few of the engines available today that run BPEL workflows while BizTalk [7]
supports XLANG. Each of these engines is designed for orchestrated operation
in wired settings.

In [5], message passing is used to distribute data in a wired setting while
MoCA [14] uses proxies for distributed control. MoCA has some design fea-
tures that support mobile environments while Exotica/FDMC [2] describes a
scheme to handle disconnected mobile hosts. In AWA/PDA [26], the authors
adopt a mobile agent based approach based on the GRASSHOPPER agent sys-
tem. WORKPAD [11] is designed to meet the challenges of collaboration in a
peer-to-peer MANET involving multiple human users. WORKPAD’s shortcom-
ing is that it requires at least one member of a MANET to be connected with
a central entity that coordinates the mobile devices. Our work is targeted to an
environment similar to that of WORKPAD. However, our approach is different
in that we use choreography rather than a central coordinator.

With a choreography-based system, a leading concern is the process by which
a workflow is distributed across various participants and then executed. In [21],
the authors describe the process by which a monolithic workflow specification can
be fragmented and eventually distributed across multiple hosts while in [5], the
authors parse a BPEL specification, discard all the structural constructs and use
the link construct to build a more graph-like specification. Several systems exist
that achieve partial choreography, a survey of which appears in [16]. OSIRIS [24]
is one such system where individual nodes maintain a hyperdatabase (HDB) to
which is pushed service execution requests by a set of global process repositories.
The choice of who to push the request to is handled by established load balancing
techniques. ADEPTDistribution [4] describes a scheme for distributed execution
of workflows such that the number of network messages is minimized. Additional
efforts are ongoing to define protocols and standards for choreography such as
in WS-CDL [1].

In summary, there are large bodies of work in orchestrated systems and lan-
guages supporting orchestrated systems in wired settings or environments with
limited mobility. Our work advanced the state of the art by bringing workflows
to the most dynamic type of mobile networks - MANETs - via the design of a
lightweight, decentralized, and choreographed WfMS.

6 Conclusion

WfMSs that provide orchestrated workflow management across stable wired net-
works are a proven technology today. However, when a WfMS is developed with a
mobile environment in mind, the centralized nature of orchestrated systems must
give way to distributed and choreographed systems. In this paper, we described
CiAN, a WfMS designed for MANETs that uses choreography of services to
complete workflow tasks. CiAN uses a publish-subscribe-like protocol that takes
results from a task and delivers them to the host responsible for executing the
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immediately succeeding tasks without going through a central coordinating en-
tity. This protocol was developed with MANETs in mind where routes between
hosts are transient and can break in an unpredictable manner. In our evalua-
tions, we found that the calls to the services that occur locally on individual hosts
took significantly less time than the process of communicating data and results
between hosts. We evaluated three variants of our communication protocol all
of which showed 100% completion when coverage upper bound was greater than
a quarter of the total area and with reasonable amounts of overhead relative to
the total specified duration of the workflow. We plan to build on this work and
add new features like workflow cycles and error management in future work.
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