
Hood: A Neighborhood Abstraction
for Sensor Networks

Kamin Whitehouse Cory Sharp Eric Brewer David Culler
{cssharp,kamin,brewer,culler}@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

ABSTRACT
This paper proposes a neighborhood programming abstrac-
tion for sensor networks, wherein a node can identify a sub-
set of nodes around it by a variety of criteria and share
state with those nodes. This abstraction allows developers
to design distributed algorithms in terms of the neighbor-
hood abstraction itself, instead of decomposing them into
component parts such as messaging protocols, data caches,
and neighbor lists. In those applications that are already
neighborhood-based, this abstraction is shown to facilitate
good application design and to reduce algorithmic complex-
ity, inter-component coupling, and total lines of code. The
abstraction as defined here has been successfully used to im-
plement several complex applications and is shown to cap-
ture the essence of many more existing distributed sensor
network algorithms.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
patterns

General Terms
Design

Keywords
abstraction, data sharing, distributed algorithms, neighbor-
hood, sensor networks

1. INTRODUCTION
One landmark paper on the design of sensor networks fore-

saw the prevalent use of localized algorithms: “a distributed
computation in which sensor nodes only communicate with
sensors within some neighborhood” [6]. Indeed, many dis-
tributed sensor network algorithms are based on some con-
cept of a neighborhood; each node selects some set of im-
portant neighbors and maintains state about each of them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSYS’04,June 6–9, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-793-1/04/0006 ...$5.00.

However, the neighborhood is still not a programming prim-
itive in the sensor network community. Neighborhood-based
algorithms are decomposed into other components, such as
neighbor lists, data caches, and messaging protocols, all of
which are components of neighborhoods but are not treated
uniformly as a single abstraction. This is partly because
each neighborhood is slightly different; different types of
nodes must be selected and different state must be main-
tained about them. Developers are still grappling for a
clear, solid abstraction that defines the ideas and relation-
ships common across neighborhoods.

The contribution of this paper is to introduce a new way of
thinking about the relationship between several fundamental
concepts of neighborhoods: membership, data sharing, data
caching, and messaging. This relationship is solidified in
a single unified programming primitive called Hood, which
allow developers to think about algorithms directly in terms
of neighborhoods and data sharing instead of decomposing
them into messaging protocols, data caches, and neighbor
lists.

A neighborhood in Hood is defined by a set of criteria for
choosing neighbors and a set of variables to be shared. A
node can define multiple neighborhoods with different vari-
ables shared over each of them. For example, Hood can
define a one-hop neighborhood over which light readings are
shared and a two-hop neighborhood over which both loca-
tions and temperature are shared. Once the neighborhoods
are defined, Hood provides an interface to read the names
and shared values of each neighbor. Beneath this interface,
Hood is managing discovery and data sharing, hiding the
complexity of the membership lists, data caches, and mes-
saging.

The proposal of programming abstractions like this one is
notoriously difficult to quantify and evaluate, but this paper
makes a series of three arguments to support Hood. First,
neighborhood-based algorithms are easier to design, imple-
ment, and modify with Hood than with only traditional
primitives. This is shown by a case study of one applica-
tion that was designed using both methodologies. Second,
the quality of the implementation using Hood is better, as
shown by a comparative analysis of the two implementa-
tions. Third, the conception of Hood captures the essence
of many distributed sensor network algorithms, as shown by
an analysis of the different usages of neighborhood concepts
seen in sixteen existing applications.

Section 2 describes the abstraction provided by Hood.
Section 3 describes the implementation of Hood and its limi-

tations while providing a brief introduction to TinyOS, nesC
and Active Messages. Section 4 presents an object tracking
application and its original implementation without using
Hood. Section 5 shows the second implementation of object
tracking which does incorporate Hood. Section 6 analyzes
the two implementations in terms of state machine complex-
ity, inter-component coupling, and lines of code. Section 7
examines existing neighborhood implementations and shows
that Hood can capture these usages. It also presents another
application that was implemented with Hood to show that
it can support sophisticated distributed algorithms. Sec-
tion 8 describes how the simple concepts introduced here
can be extended to support more complex neighborhoods
such as multi-hop or bi-directional neighborhoods. Section 9
presents other programming abstractions and their relation-
ships with Hood. Finally, Section 10 supplies a summary
and conclusions.

2. THE HOOD ABSTRACTION
Hood provides an abstraction for a very common behav-

ior in sensor network algorithms: sharing and viewing at-
tributes of neighboring nodes. For example, a node might
want to view the locations of its nearest nodes or the light
values of neighbors in the shade. This behavior involves
a unique relationship between the concepts of data sharing
and neighborhoods; data sharing is limited to the scope of the
local neighborhood, and the neighborhood is defined by its
membership and the data being shared. The goal is to cap-
ture useful, lightweight mechanisms that match the essence
of many distributed algorithms in wireless sensor networks.

Hood captures this relationship by establishing 1) which
attributes are to be shared, and 2) the membership criteria
that characterize a neighborhood. Once defined, Hood pro-
vides an interface to list the names of the current neighbors
and to view their shared attributes. Beneath this interface,
Hood is automatically discovering neighbors and caching the
values of their attributes while simultaneously sharing the
values of the node’s own attributes.

2.1 Broadcasting and Filtering
Key to the implementation of Hood is the broad-

cast/filter mechanism used for both data sharing and neigh-
borhood discovery. When attributes are shared they are al-
ways broadcast. The receiving nodes “filter” the incoming
attributes to determine which nodes are adequate neighbors
and which of their attributes should be cached. This de-
couples the owner of an attribute from the observers of the
attribute. The receiver of an attribute has exclusive control
to add and cache a node in its neighbor list; the owner of the
attribute has neither control over nor knowledge about the
nodes that are actively recording its state. This means that
in Hood a neighborhood is fundamentally a local construc-
tion at each and every node, in contrast to groups where
membership is shared an manipulated among the nodes in
the group.

A node typically only caches attributes from nodes that
it considers valuable. To do so, the node may need to de-
fine multiple neighborhoods, each with its own definition of
a valuable neighbor and each caching different types of at-
tributes. For example, a node might define a routing neigh-
borhood that caches the location information of valuable
routing nodes and a sensing neighborhood that caches sensor
information of valuable sensing nodes. Each node’s neigh-

Neighbors: B, C
Co-neighbors: B

Neighbors: A, C
Co-neighbors: A, D

Neighbors: B
Co-neighbors: none

Neighbors: none
Co-neighbors: A, B

A B

C D

Figure 1: Neighbor membership. A node locally
caches readings and data of its neighbors; A records
data reported by B and C. A node’s own readings
and data are remotely cached at its co-neighbors;
A’s data reports are recorded at B. A node only
maintains a neighbor membership list and has no
information of its co-neighbor membership; A does
not know that its data reports are cached at B. This
inherent asymmetry is made possible by exploiting
a cheap broadcast mechanism. Symmetry may at
times occur; A and B record each other’s data –
though, this symmetric relationship is incidental.

borhood independently decides which neighbors are valuable
based on the shared attributes they are broadcasting, fills
its neighbor list, and caches the attributes it deems impor-
tant. The decoupling of owners from observers allows this
to happen without the owner knowing who deems it to be
valuable for routing or sensing.

Implicit in the decoupling of owners and observers is a
potential for asymmetry in neighborhoods. For instance, in
Figure 1, B is in D’s neighborhood but D is not in B’s
neighborhood. To help reason with this relationship, we
introduce the notions of a neighbor and co-neighbor. A node
caches data reports from its neighbors, and a node’s own
data reports are cached at its co-neighbors.

The broadcast/filter process is part of what makes Hood
especially suitable for sensor networks. First, it allows Hood
to exploit the cheap broadcast channel inherent in wireless
networks. Further, it promises only the weak sharing seman-
tics that unreliable, low-bandwidth networks can provide;
the neighbors in the neighbor list and the cached values
of a neighbors’ attributes represent only the best or most-
recently observed. Any stronger guarantees about consis-
tency, coherence or reliability are intentionally deferred to
the application level.

2.2 Basic Concepts
Attributes define the elements of a node’s state that are

shared with its neighbors, such as sensor readings or geo-
graphic location. When a node updates its own attribute,
the value is said to be reflected to its co-neighbors, much
like traditional reflective memory (RM) [15]. Exactly how
data is reflected is determined by the push policy. Typi-

interface Attribute {
command int get();
command void set(type value);
command void push();
event void updated(type value);

}

interface Hood {
command nodeID[] getNeighbors();
command bool isNeighbor(nodeID id);
event void removingNeighbor(nodeID id);
event void addedNeighbor(nodeID id);
command void bootstrap();

}

interface Reflection {
command int get(nodeID id);
command void pull(nodeID id);
event void updated(nodeID id, type value);

}

interface Scribble {

command int get(nodeID id);

command void set(nodeID id, type value);

event void updated(nodeID id, type value);

}

Figure 2: Hood attribute, neighborhood, reflection,
and scribble programming interfaces.

cally, this is simply to broadcast the value each time it is set.
An alternative might be to broadcast periodically, reliably,
or never at all. The latter case might be useful for allow-
ing application-level control over attribute sharing, which is
possible through the push/pull interface described in Sec-
tion 3.

When an attribute is received at a co-neighbor, it is passed
through the filters of each neighborhood defined on that
node. Filters examine each shared attribute to determine
which nodes are valuable enough to place in the neighbor
list and which attributes of those nodes need to be cached.
For each node in the neighbor list, a mirror is allocated,
which represents the local view of that neighbor’s state. It
contains both reflections, which are cached versions of that
neighbor’s attributes, and scribbles, which are local anno-
tations about that neighbor. Scribbles are often used to
represent locally derived values of a neighbor such as a dis-
tance estimate or link-quality estimate.

3. IMPLEMENTATION
Hood was developed in nesC on the TinyOS software plat-

form [8], which provides a component-based software model
and an Active Message communication model. nesC mod-
ules are software components that are wired together to
form an application, much like hardware components on a
schematic. Components are described using bidirectional
interfaces, where providers of an interface process its com-
mands and users of an interface handle its events. A mod-
ule that uses an interface is wired to a module that provides
that interface using a configuration file. Active Messages is
a messaging abstraction where each message type is associ-
ated with a unique block of code that is run each time that
type of message is received.

Hood provides individual interfaces for attributes, neigh-
borhoods, reflections, and scribbles, shown in Figure 2. The

generate attribute LightAttribute from int;

generate neighborhood LightHood {
wire filter LightThreshold;
set max_neighbors to 5;
reflection LightRefl from LightAttr;

}

Figure 3: Sample specifications that generate un-
derlying code for Hood.

architecture between these interfaces is shown in Figure 5;
Figure 4 assists in understanding the dependencies expressed
in the diagram.

The rest of this section describes how these interfaces and
supporting modules are automatically generated, how Hood
caches, sends, and receives data from other nodes, and fi-
nally some costs and limitations of both the abstraction and
the implementation.

3.1 Code Generation
One of the main challenges in designing Hood is that each

neighborhood requires slightly different algorithms and data
structures, which are difficult to parameterize. To address
this, we developed a form of code generation to allow pa-
rameterization of each neighborhood implementation.1

Some nesC configurations of Hood are created with
generate commands that parameterize the underlying mod-
ule with constants, algorithms, and data structures. One
aspect of this technique is that the algorithmic parameters
take the form of a user supplied nesC component. This
minimizes the weight of the Hood abstraction by provid-
ing a foundation and framework for neighborhoods without
needlessly restricting the developer. Furthermore, in this
scheme, the source template for the generated code can also
be specified as a parameter, allowing the user to change any
aspect of Hood.

As an example, the LightHood specification in Figure 3
specifies the filter algorithm of the neighborhood to be
the LightThreshold component, sets the max neighbors to
5, and derives the data structure and wiring necessary for
the LightRefl reflection from the LightAttr attribute.

This code generation technique is not specific to Hood,
and we have developed it as a general architecture to support
other services we use in our sensor networks. For instance,
generate specifications can be embedded within each other,
so one algorithmic parameter may specify a module which
is itself generated.

3.2 Caching Data
Hood uses neighborhood and attribute modules to cache

its data. At the core of a neighborhood component is an
array of mirrors, where each mirror is a structure that holds
the nodeID, reflections, and scribbles for a neighbor. The
cache is statically allocated to hold the maximum number of
neighbors specified for the neighborhood. The neighborhood
component provides one interface to access the membership
list and individual interfaces for each scribble and reflection.
The neighborhood configuration also automatically wires to
its specified filter component and to a NeighborhoodComm

1The syntax presented here is simplified for expositional
purposes.

B
provides

uses

A
provides

uses

com
m

and

event

Figure 4: This diagram de-
scribes how to interpret the
connections between modules
in Figure 5. Modules A and B
each provide and use some in-
terfaces. Any arrow connect-
ing the bottom of A to the top
of B means that A uses an in-
terface provided by B. An ar-
row pointing from A to B de-
scribes a command: behaviors
that A can invoke on B. An ar-
row pointing from B to A de-
scribes an event: behaviors that
B can invoke on A.

module, which is a data marshalling layer that runs over
the standard radio stack.

A special attribute component is used to cache the value
of each attribute. The attribute configuration automati-
cally wires to its push policy and to the NeighborhoodComm

module. If the auto-push parameter is set, which is the de-
fault, then the attribute reports changes to its value using
NeighborhoodComm.

Hood statically allocates the maximum amount of mem-
ory required for its data caches, because we require that a
neighborhood is always able to maintain state for its max-
imum number of neighbors. This means that memory re-
mains allocated for empty or partially-empty neighborhoods
and for attributes that have not yet been reflected. Local
reflections of the same attribute are also stored once in each
relevant neighborhood. While regrettable, this is the only
way to guarantee memory availability for all attributes and
neighbors. A misguided attempt to unify the data caches
by storing each reflection only once incurs the cost of refer-
ence counting and other additional problems for little or no
benefit.

3.3 Sending Data
The push policy component allows the user to provide dif-

ferent sharing semantics for an attribute beyond the simple
auto-push. For example, a policy might be to push the value
periodically in mobile networks where neighborhoods change
frequently. For important changes, the policy may push the
attributes several times for robustness to packet loss. Each
time the attribute is written, the push policy receives no-
tification that the value has been updated and determines
what action to take. Because the push policy is a standard
nesC component, any policy can be written by the user.

A more complicated push policy may be required for an at-
tribute that is shared over multiple neighborhoods each with
different update requirements. For example, a Location at-
tribute may be shared over both a localization neighbor-
hood, which needs all possible updates of neighbor loca-
tions, and a geographic routing neighborhood, which only
needs large changes but sent robustly. It is left to the ap-
plication developer to ensure that the sharing policy meets
the requirements for all relevant neighborhoods. This can
be guaranteed, though perhaps suboptimally, by specifying
multiple relevant push policies for the attribute.

A push policy can also be used to aggregate several at-
tributes into one update message. This is necessary if two

Neighborhood Comm

Filter 1

R
ecv A

ttr/B
oot

S
end B

oot

Hood 1

M
em

bership, D
ata

B
oot

E
num

, D
ata,

P
ull, B

oot

Filter 2

Hood 2

Attr 1

G
et, S

et, P
ush

U
pdated

U
pdated

S
end A

ttr

push
policy

U
pdated

S
end A

ttributes

Attr 2

push
policy

P
ush

Application

S
cribble

Figure 5: This illustrates a component model for an
application with two neighborhoods and two shared
attributes. For each neighborhood, a Hood com-
ponent is created and wired to its respective filter.
For each attribute, an Attribute component is cre-
ated and is wired to its respective push policy. At-
tributes are sent over the radio through Neighbor-
hoodComm by Attribute components and received
by Filter components.

attributes must be guaranteed to be consistent with each
other, such as light value and geographic location. This is
also especially useful for certain classes of membership fil-
ters, discussed below.

3.4 Receiving Data
When a remote attribute update is received through

NeighborhoodComm, it is passed into the filter of each neigh-
borhood that is reflecting it. The filter may 1) update
the neighbor mirror if it is already a member, 2) remove
the neighbor if it no longer meets membership criteria, or
3) add the neighbor if it meets membership criteria, pos-
sibly first ejecting a worse neighbor if the neighbor list is
full. In this way, discovery is a natural consequence of the
push/filter process; the neighbor list and reflections are pop-
ulated simultaneously. This technique of locally isolating the
management and knowledge of membership is what allows
Hood to embrace asymmetry and exploit the cheap broad-
cast mechanism inherent in wireless networks.

Writing to a scribble goes through the neighborhood filter,
as well, though it originates from the neighborhood com-
ponent instead of from the NeighborhoodComm component.
This is necessary for the cases in which a scribble, such as
a link-quality estimate, is a significant factor of neighbor
membership.

Some filters may require more than one attribute to evalu-
ate a neighbor. For example, a light neighborhood may need
both light value and geographic location to decide if a node
should gain membership. This is an example of when it is
useful to use the push-policy to aggregate several attributes
into the same packet.

If neighboring nodes are not actively pushing attributes,
then the neighbor list and reflections remain unpopulated.

This can be a problem if, for instance, a node joins an area of
the network where nodes infrequently share their attributes.
For such cases, the bootstrap command sends a request to
all potential neighbors to update their attributes relevant to
membership. The filter module must implement bootstrap
because it is the only component that knows which at-
tributes are important. bootstrap is similar to pulling a
reflection from a neighbor, except that it requests data from
all nodes, not just one.

3.5 Costs and Limitations
A potential issue with Hood is that it hides the messaging

cost from the application writer; a simple write into a shared
variable can cause multiple messages to be sent. While ex-
plicitly separating shared variables into special components
is an effort to reveal this to some extent, the exact cost in
not apparent. For example, Hood is only well suited for
platforms with a cheap broadcast mechanism. If one is not
available, perhaps because of a TDMA communication pro-
tocol such as that used in Bluetooth, sharing variables is
no longer cheap, instead requiring a separate message to be
sent for each neighbor. Much for the reason of limiting hid-
den costs, Hood makes no guarantees toward consistency
and reliability of attribute sharing, and the cost of dropped
packets is explicitly deferred to the push policy designer. In
this way, Hood imposes no extra or unexpected costs due to
dropped packets or network partitions.

Because it does not impose constraints on the applica-
tion design beyond those implicit in the abstraction, there
are some potential pitfalls when using Hood. For instance,
allocating too little buffer space or using malformed filters
could result in membership thrashing or membership race
conditions in which the same nodes are continually replac-
ing each other in the neighbor list. Updating an attribute
based on the reflection of another node could cause live-
lock or infinite recursion, where each push from one node
causes many pushes from other nodes repeatedly. Finally, a
single event in a sensor network, such as a moving object,
might cause a set of nodes to simultaneously push attribute
updates, causing network collisions. This has been amelio-
rated in the past by using push policies that inject a random
delay before pushing.

Establishing membership may be difficult if a filter simul-
taneously requires both a scribble and an attribute. For ex-
ample, a geographic routing neighborhood may select nodes
closer to the routing destination and with the highest radio
link quality. Hood has no mechanism to directly support
this because the two pieces of data are coming from differ-
ent sources; the location attributes originate at the remote
nodes but link-quality estimates originate at the local node.
One solution is to use two neighborhoods: a candidate neigh-
borhood which maintains link quality estimates, and a full
routing neighborhood which establishes membership in part
based on the candidate neighborhood.

Consistency within a node between local caches of the
same attribute is guaranteed because the only writers to re-
flections are the filters, which are always updated together
from NeighborhoodComm, a service provided by the Hood
library. Hood, on the other hand, does not to employ
cache consistency techniques between remote nodes, such
as those techniques used in more traditional DSM architec-
tures [4]. Because a node does not explicitly know who its
co-neighbors are, it cannot guarantee that its co-neighbors

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5,3)

(1,4) (2,4) (3,4) (4,4) (5,4)

(1,5) (2,5) (3,5) (4,5) (5,5)

1. Car drives
2. Mag readings broadcast

3. Position estimate is routed to camera

Figure 6: Event Sequence in OTA. 1) The car drives
around position (4,4) (dashed-line). 2) Six nodes
broadcast readings (lightened nodes). 3) Node (4,4)
declares itself the leader, aggregates the readings,
and routes them to the base station (dark arrows).

receive its attribute updates. This artifact is a consequence
of the CAP principle [7]: it is impossible to have both consis-
tency and availability in the presence of network partitions.
Because we assume that sensor networks are almost always
partitioned to some extent, we design Hood to provide data
availability over consistency.

4. OBJECT TRACKING
The object tracking application (OTA) is a distributed

sensor network application that detects and reports the po-
sition of a moving object within a sensor field. It is also
the largest TinyOS application known to date, and in fact
first motivated the abstraction of the neighborhood concept
as presented in this paper. As a case study of the Hood
abstraction, this section describes the design of OTA by the
authors before the idea of Hood was well developed. Sec-
tion 5 will present a later design of OTA which incorporates
Hood. At the time of the first implementation, the develop-
ers were familiar with the programming primitives provided
by TinyOS, but had an imprecise notion of neighborhoods
and data sharing.

In the implementation discussed here, a remote control car
is driven through a field of magnetometers and the network
routes a position estimate of the car to a camera, which visu-
ally follows the vehicle. Figure 7 (left) is a photograph of the
final application in action. Figure 7 (right) is an extension
of the application in which the camera is replaced by an au-
tonomous robot which chases the moving object. When no
objects are moving in the sensor field, all nodes silently mon-
itor their magnetometers. All nodes perform some form of
localization and report their locations with their neighbors.
When a node detects a magnetic disturbance, it also reports
this to it neighbors. Each time instance, the node with the
largest disturbance declares itself the leader, estimates the

.

.

.

Figure 7: Object tracking applications. left) Indoor testbed with 25 nodes. An RC car and a pan/tilt
camera. As the remote control car is driven through the sensor field, the network locates the car and sends
the position to the camera, which visually tracks the vehicle. right) Real outdoor deployment with 100 nodes
and two robots. As one robot moves, the network reports its position to the second robot (with the safety
cone), which pursues it autonomously.

location of the disturbance and routes that estimate to the
camera. The event sequence of OTA is depicted in Figure 6.

The programming primitives of TinyOS encourage the dis-
tributed algorithm above to be broken down in terms of soft-
ware components and messaging protocols: each data type
is to be shared over a different messaging protocol, and each
messaging protocol is to be implemented by a different soft-
ware component. This naturally leads to components that
store an attribute, share that attribute with neighboring
nodes, and cache neighbors’ attribute values. Such com-
ponents are shown in Figure 8.a. This type of design is
composable in that each component is self-contained and,
as such, can be removed or replaced without affecting any
other components. Following this rationale, the OTA de-
velopers originally decomposed the application into three
components, tracking, routing, localization which stored and
shared magnetometer values, link-quality estimates, and ge-
ographic locations, respectively. This software architecture
is described below.

• The localization component stores the node’s lo-
cation and reports a location message whenever it
changes. When a location message is received, the
value is cached in an array with the neighbor’s ID, if
there is space. It provides the location of remote nodes
to other components through a simple read-value in-
terface to its data cache.

• The tracking component monitors the magnetome-
ter and reports a sensing message when it significantly
changes. When a new location is learned in the lo-
cation neighborhood, that node is evaluated for being
in the tracking neighborhood as well. When a sensing
message is received, the value is stored in an array with
the neighbor’s ID if that neighbor is in the neighbor
list. If the node is the leader, it calculates a position
estimate using the local sensing cache and locations
from the localization cache interface. It sends an es-
timation message through the routing component for
delivery to the camera node.

• The routing component uses geographic routing.
When a new location is learned in the location neigh-

borhood, that node is evaluated for being in the rout-
ing neighborhood as well. Whenever it receives an es-
timation message, either from the tracking component
or from another node, it decides which node is closest
to the destination by searching through the locations
of its neighbors via the localization cache interface.

This initially feels like a good decomposition because each
module is specifically responsible only for the messaging,
caching, and neighbor list directly related to a certain data
type. The design is flawed, however, in that the member-
ship requirements are not independent. The tracking and
routing components need the location of each node in their
neighbor lists but the localization component populates the
location cache using its own membership criteria, irrespec-
tive of which locations the other components need. There-
fore, the API to the location component must be extended
to allow the coordination of the location cache and loca-
tion messages with routing and tracking membership. The
resulting architecture is illustrated in Figure 8.b.

In this architecture, the designers chose to couple data
sharing and data caching because they share the same mes-
saging protocol and are therefore easy to implement in the
same component. The problem is that each component
in the system then requires conflicting membership crite-
ria from a single data cache. An alternative implementation
might have been to couple caching with membership instead
of with data sharing. In OTA, that would mean storing the
location of each node redundantly in the tracking or routing
neighborhoods to keep the location cache consistent with the
other two neighbor lists, as shown in Figure 8.c. The prob-
lem with this implementation is that tracking and routing
must then share a messaging protocol with the localization
component; instead of being coupled through an interface,
they are coupled through a messaging protocol.

It seems inevitable that all three software components be
highly coupled because of the difficult relationship between
the membership, data sharing, data caching, and messaging.
Such a coupling is a problem for both incremental design and
composability. OTA began as a simple tracking algorithm
and only later incorporated aspects of geographic routing
and localization, each time involving a redesign and new de-
composition. Once the new components were incorporated,

a.

Module A
- Attr - AttrA
- Refl - ReflA
- Scrib - ScribA

Module B
- Attr - AttrB
- Refl - ReflB
- Scrib - ScribB

Module C
- Attr - AttrC
- Refl - ReflC
- Scrib - ScribC

Module A
- Attr - AttrA
- Refl - ReflA
- Scrib - ScribA

Module B
- Attr - AttrB
- Refl - ReflB
- Scrib - ScribB

Module C
- Attr - AttrC
- Refl - ReflC
- Scrib - ScribC

Node A Node B

b.

Localization
- Attr - Location
- Refl - Location

Tracking
- Attr - Mag
- Refl - Mag

Routing
- Scrib - LinkQ

Localization
- Attr - Location
- Refl - Location

Tracking
- Attr - Mag
- Refl - Mag

Routing
- Scrib - LinkQ

Node A Node B

c.

Localization
- Attr - Location
- Refl - Location

Tracking
- Attr - Mag
- Refl - Mag
- Refl - Location

Routing
- Scrib - LinkQ
- Refl - Location

Localization
- Attr - Location
- Refl - Location

Tracking
- Attr - Mag
- Refl - Mag
- Refl - Location

Routing
- Scrib - LinkQ
- Refl - Location

Node A Node B

Figure 8: a) It is easiest to isolate data sharing and data caching together within the module that implements
the message protocol. b) This can cause coupling of components due to shared membership constraints on
the data caches. In this case, Tracking and Routing impose membership constraints on the location cache. c)
Replicating the location cache within Tracking and Routing resolves the membership coupling but introduces
coupling due to messaging.

they could not easily be switched with other localization or
routing algorithms because they were so tightly integrated
with the rest of the application. Section 5 shows how Hood
can help address this problem by defining a different rela-
tionship between the neighborhood mechanisms.

5. OBJECT TRACKING REVISITED
The process of designing OTA with Hood as a first-class

primitive is different than that of designing with its compo-
nent pieces of messaging, caching, and neighbor lists. In-
stead of decomposing the algorithm into message protocols
and data structures as we saw in Section 4, the developer de-
fines which data is to be shared and the membership criteria
for each neighborhood.

In OTA, two neighborhoods need to be formed, one for
tracking and one for routing. The tracking neighborhood
needs to reflect both the magnetometer reading and location
of each node that is within some geographic radius. The
routing neighborhood needs to reflect the location of each
node that is closer to the camera than the node itself and
has two scribbles to hold link-quality estimators for each
node. These neighborhoods, attributes, and mirrors can be
created with the following lines of code:

generate attribute MagAttr from int;
generate attribute LocationAttr from location_t;

generate neighborhood MagHood {
wire filter GeographicRadius;
set max_neighbors to 3;
reflection MagRefl from MagAttr;
reflection LocationRefl from LocationAttr;

}

generate neighborhood RoutingHood {
wire filter ClosestToDestination;
set max_neighbors to 8;
reflection LocationRefl from LocationAttr;
scribble RxLinkQualityScrib from int;
scribble TxLinkQualityScrib from int;

}

The first two attribute commands establish MagAttr as an
integer and LocationAttr as a structure location t defined
in a header file elsewhere. When these attributes are set,
they are cached and by default pushed to co-neighbors.

The next block generates code for the MagHood neighbor-
hood. The block sets the neighborhood filter to be the
GeographicRadius module and sets the maximum number
of neighbors to three. It further defines two reflections in
the neighborhood. The MagRefl reflection caches neighbor
updates of MagAttr. The LocationRefl reflection caches
neighbor updates of LocationAttr.

The last block generates code for the RoutingHood neigh-
borhood. The block sets the neighborhood filter to be the
ClosestToDestination module and set the maximum num-
ber of neighbors to eight. It futher defines a reflection and
two scribbles. The LocationRefl reflection caches neighbor
updates of LocationAttr. The RxLinkQualityScrib and
TxLinkQualityScrib scribbles establish one integer each in
the cache for locally derived estimates of the receive and
transmit link quality of a neighbor.

The resulting Hood infrastructure for this application is
depicted in Figure 10. The two attributes are depicted in the
center and associate with the two neighborhoods that span
to either side. Only the mirrors of the MagHood reflect the
magnetometer attribute, but all mirrors reflect the location.
If a node were in both the MagHood and the RoutingHood,
its location could be accessed through its mirror in either
neighborhood. Other mirrors in the background represent
the fact that many more neighborhoods and mirrors could
be created by other sub-systems or services that are not con-
sidered here, such as the MAC layer or time synchronization
service.

This Hood infrastructure supports the overall system ar-
chitecture shown in Figure 9, where the data cache for
all attributes, reflections and scribbles are separate compo-
nents as are the neighbor lists. This architecture avoids the
coupling problems in Figure 8 by separating data sharing
from data caching, joining data caching with membership,
and providing a data messaging layer to both marshal and

- Attr - Mag

Tracking Hood
- Refl - Mag
- Refl - Location

Routing Hood
- Refl - Location
- Scrib - LinkQ

- Attr - Location
Localization

Tracking

Routing

N
ei

gh
bo

rh
oo

d
C

om
m

N
ei

gh
bo

rh
oo

d
C

om
m

- Attr - Mag

Tracking Hood
- Refl - Mag
- Refl - Location

Routing Hood
- Refl - Location
- Scrib - LinkQ

- Attr - Location
Localization

Tracking

Routing

Node A Node B

Figure 9: An OTA neighborhood architecture designed using Hood as the fundamental programming primi-
tive. This architecture decouples modules that own and share data from those that need to cache and view
that data. This allows modules to express membership criteria independent of the owner modules and other
viewer modules. Data is marshalled and dispatched through Neighborhood Comm, avoiding inter-component
coupling due to messaging protocols.

dispatch data, and allowing the data-sharing components
to communicate with the data-caching/membership compo-
nents. The algorithms for each system component are also
simplified because data-sharing takes place automatically,
and neighbor selection is relegated to a separate module.

• The localization component sets the node’s loca-
tion attribute each time it learns that its location has
changed.

• The tracking component monitors the magnetometer
and writes the magnetometer attribute when it signif-
icantly changes. If the node is the leader, it estimates
the object position using the locally cached magne-
tometer values and locations of neighbors. It sends an
estimation message through the routing component for
delivery to the camera node.

• The routing component uses geographic routing.
Whenever it receives an estimation message, either
from the tracking component or from another node,
it decides which node is closest to the destination by
searching through the cached locations of its routing
neighbors.

6. EVALUATION
To compare the algorithmic complexity between the im-

plementations, the tracking modules of both the original and
the Hood OTA implementations were analyzed as a state
machine. In original OTA it has 6 explicit binary state vari-
ables and dozens of states and transitions. Most of these
states involve whether or not a data-sharing message is send-
ing, whether or not the magnetometer is being read, the
state of the neighbor table, whether the node is performing
leader election and whether a tracking message is being sent
to the camera. Most transitions involve receiving protocol
messages, timer events, magnetometer reading events, and

membership changes. In Hood OTA, the same component
has only 1 explicit state variable, five states and seven transi-
tions. The one state variable indicates whether the message
to the camera is being sent or not. The five states differenti-
ate between collecting data, performing leader election, and
sending the tracking estimate to the camera. This reduction
in state machine complexity is largely due to the fact that
the application does not need to manage the data sharing
protocols or the data cache. This decrease in the amount of
internal state is significant because stateful behavior must
be carefully checked and is often difficult to debug.

The tracking module in original OTA has 212 lines of code
while it has 134 lines of code in the Hood implementation,
a 33% reduction. The code that was moved from the ap-
plication module to the filter module was not included as
removed code. Almost none of the code savings pertain to
membership. About 50% of the savings involve defining,
initializing and maintaining state about the neighbor table
data structures, and another 50% is saved in message pro-
tocol overhead. Of course, reducing lines of code in itself
is not a measure of better code quality; this statistic is per-
haps best read to say that 33% of the code was replaced with
pre-verified libraries and the Hood API. This is especially
important since maintaining data structures and managing
messaging protocols are some of the more error-prone parts
of an algorithm.

Finally, we compare the coupling of both OTA implemen-
tations. In the original OTA, there is tight coupling from
the localization module to the tracking and routing mod-
ules. Both modules depend on the localization data cache
to maintain the location for nodes of interest, and there is no
guarantee that locations will be available when the modules
need them. Directly improving that cache behavior for the
benefit of tracking and routing results in dependencies that
make the localization module non-composable in generic ap-
plications.

Figure 10: This image represents the interface that each module in OTA has to the neighborhoods, attributes
and mirrors created by Hood. The bare white boxes down the middle are the node’s own attributes. The
larger grey boxes are mirrors and the white boxes inside them represent reflections and scribbles. Notice
that Mag is reflected only over the TrackingHood while Location is reflected over both neighborhoods. The
grayed-out mirrors represent other neighborhoods that might be created by other services on the system,
such as localization or time synchronization.

In the OTA built on Hood, the owners of data, such as
the localization module, use the Hood library and interfaces
to decouple from the viewers of data, such as the tracking
and routing modules. Here, location updates are cached
separately in each neighborhood, assuring that relevant lo-
cations are available to each module when it needs them.
Furthermore, constraints among mirrors are expressed in a
single filter per neighborhood, allowing for high level mod-
ules to be reused between applications, for new high level
modules to transparently replace old ones without having
to express application-specific constraints, and for filters de-
termining the character of a neighborhood to be developed
independent of those high level modules. Because of this,
the resulting design is more maintainable, composable, and
reusable.

7. VALUE TO EXISTING APPLICATIONS
The last two sections have shown that Hood has facili-

tated OTA both in the design process and in the final code
quality, but it remains to be shown that it might benefit any
other sensor network applications. To this end, Table 2 lists
sixteen existing sensor network systems and services devel-
oped at seven different institutions across the country and
shows that they all use neighborhood concepts in some form.
Hood can capture the essence of these neighborhood usages
insofar as they can be decomposed into its constituent com-
ponents, as shown in the table. Furthermore, many of the
implementations are immature enough to warrant the claim
that there is still a barrier of entry to using neighborhoods at

all. These applications have all been made publicly available
either in the TinyOS repository or on the web.

A brief analysis shows the approximate number of neigh-
bor lists, shared attributes, reflected attributes, and local
scribbles used in each application. Only those neighbor-
hood instances specific to an application itself were included
in the totals. For example, while high level applications
like Object Tracking seem to use neighborhoods only once
or twice, they might use Location Node, Mutation Routing,
Time Sync and S-mac as underlying services, resulting in
total usage of Hood concepts indicated in Table 1.

All neighborhoods discovered were one-hop neighbor-
hoods and most if not all of the neighborhoods implicitly
use the broadcast/filtering approach adopted by Hood. This
is good evidence that Hood captures the common neigh-
borhoods in sensor network applications. There are two
types of neighborhoods observed, those with more scrib-
bles than reflections and those with more reflections than
scribbles. The first type is more common in MAC imple-
mentations and some routing algorithms that try to perform
silent link-quality estimation. The second type is more com-
mon in localization systems, time synchronization systems,
and application-specific distributed algorithms that actually
have application state and data that needs to be shared.

Many of the existing neighborhood implementations sup-
port the claim that, even with all the building blocks of
neighborhoods available, a suitable implementation is diffi-
cult to achieve. Most implementations maintain the neigh-
bor list as a member variable array within a component. As
shown in Section 4 this can cause a coupling problem com-

Application Neighbor Lists Attributes Reflections Scribbles
Object Tracking 6 16 17 10

Table 1: OTA Hood usage Usage of hood concepts in OTA if usages of all subsystems were counted.

Application Neighbor Lists Attributes Reflections Scribbles
Blast 1 3 3 6
Calamari 2 5 5 2
EnviroTrack 2 3 3 2
Geographic Routing 1 0 1 1
GSK 1 0 0 2
Location Node 2 8 8 4
Mutation Routing 1 4 4 3
Object Tracking 1 1 2 1
Prime 1 0 0 1
PG Routing 2 3 3 7
S-mac 2 3 3 5
Social Net 1 0 0 1
Surge 1 2 2 4
TimeSync 1 1 1 1
TSync 1 3 3 1
TinyDB 1 2 2 1
Tiny Diffusion 2 1 1 7

Table 2: Existing Applications publicly available for TinyOS and their approximate usage of Hood concepts.

mon in young neighborhood implementations when different
components begin to share neighborhood information. The
implementations of data caches range from having multiple
attributes all stored in one large char* array, to being con-
tained each in separate (type-safe) arrays, to more mature
implementations that have neighbor tables, which are ar-
rays of structures. Only two applications separate neighbor
tables as a separate software component that could be inde-
pendently verified and reused. None of the implementations
besides Hood dissociate data sharing from data caching to
allow a single attribute to be shared over multiple mem-
bership lists, nor do any include messaging machinery to
facilitate automatic data sharing.

A clean, well-defined implementation of a neighborhood
abstraction is likely to promote the use of more neighbor-
hoods and reflections. The four systems and services that
were implemented with Hood, Calamari, Geographic Rout-
ing, Mutation Routing, and Object Tracking have an unusu-
ally high number of uses of neighborhood compared to other
applications in their corresponding categories. This is partly
due to the fact that Hood inspired their architectures as well
as the lower effort required to maintain lists of neighbors and
state about them.

7.1 A Distance-Vector Implementation
To more concretely show that Hood can capture many

sophisticated distributed algorithms, this section examines
how one of the applications described above was imple-
mented with Hood.

Calamari is a self-localization system for ad-hoc sensor
networks [18] that discovers the positions of the nodes in
a network relative to three or more anchor nodes. There
are two parts to Calamari: ranging and localization. The
ranging system gives each node the distance to its neigh-
boring nodes. The localization system uses these ranging
estimates with the DV-distance algorithm [12] to estimate

the node’s location. In this section, we describe how both
of these components exploit properties of neighborhood.

The DV-distance algorithm requires each node to trilater-
ate against at least three anchor to estimate its position. If
a node is not within ranging distance of an anchor node, it
can estimate the distance to be the shortest path distance
to that anchor. Each anchor initiates a flood where nodes
estimate, share, and revise their distances estimates to the
anchor nodes. In this way, the anchor node locations prop-
agate through the entire network, simultaneously building
shortest path distance estimates in a distance-vector man-
ner.

Importantly, this long-distance information sharing and
recursive algorithm are done with only local neighborhoods.
When designing this algorithm with Hood, the neighbor-
hoods and shared variables must be defined. Each node
needs a RangingHood for the ranging estimates of all re-
porting nodes and a ShortestPathHood for its neighbors’
shortest path estimates and the corresponding anchor loca-
tions. Finally, each node needs a set of local ShortestPath
attributes for its own shortest paths to each anchor.

Given this infrastructure, the algorithm is easy to
understand. Ranging estimates are scribbled into the
RangingHood whenever they are received. Because short-
est path estimates are automatically shared, the node must
simply watch for changes in the shortest path reflections
and the ranging scribbles. If a change is detected, the local
shortest path attribute is set to the new value. These val-
ues are automatically shared and are available anytime for
computing a new location estimate.

8. WORK IN PROGRESS
The neighborhood abstraction is optimized for lossy data-

sharing over a one-hop neighborhoods. It is not, however,
constrained to this domain and can be extended to multi-hop
neighborhoods or to bi-directional, reliable neighborhoods.

This section reviews two natural extensions to the standard
abstraction that are currently being developed and the issues
they introduce.

8.1 Multi-hop Neighborhoods
A one-hop broadcast mechanism provides an implicit

neighborhood, those nodes with which there is radio con-
nectivity, and the membership filters are simply restrict-
ing this number to a useful set. To generalize this idea,
any broadcast mechanism defines an implicit neighborhood.
For example, two-hop neighborhoods could be supported by
two-hop broadcasts or geographic neighborhoods could be
supported by geographically-directed broadcast.

This extension is not quite so simple, however. Recall that
an attribute is always pushed to co-neighbors and pulled
from neighbors. This means that a “two-hop to the East”
neighborhood would need to be supported by a “two-hop to
the West” broadcast mechanism. Furthermore, an attribute
pull in multi-hop neighborhoods must either be supported
by full-fledged routing algorithms or must use eg. a “two-
hop to the East” broadcast mechanism, which is wasteful.

To support multi-hop neighborhoods, the Neighborhood-
Comm component allows one to override the communica-
tion protocols necessary to send messages to all potential
co-neighbors (push), each neighbor (pull), or a specific co-
neighbor (pull response). This allows one to extend the
neighborhood abstraction to multi-hop neighborhoods by
changing only a single software component. Notably, how-
ever, no existing application has yet required anything more
than a one-hop broadcast.

8.2 Bi-directional, Reliable Neighborhoods
It may be desirable to have neighborhoods in which the

radio links to all neighbors are bi-directional and/or reliable.
This is especially important for ad-hoc routing protocols,
which almost always maintain state about neighbors and
often care only about bi-directional or reliable neighbors.

Choosing bi-directional or reliable neighbors can be
achieved by either pinging each neighbor, perhaps period-
ically, or requesting an acknowledgment after each routing
message. The ratio of acknowledged messages can be held
in a scribble associated with each node.

Bi-directional and reliable neighborhoods require a sin-
gle caveat. Even though they do not necessarily require a
multi-attribute filter, the scribble for each node cannot be
thrown away without allowing the possibility of thrashing,
where a node is ejected from the neighborhood and is soon
reconsidered for membership. Furthermore, the potential
neighbor cannot provide this information in its membership
messages. Therefore, nodes maintaining this type of neigh-
borhood must be robust to neighbor thrashing, possibly by
having enough memory to hold information about all poten-
tial neighbors, or through some other technique.

9. RELATED WORK
Hood is something between a process group abstraction

and reflective memory. The process group approach [1] has
a long history in the distributed computing domain, where
groups are a globally consistent list of member processes.
Process groups have very strict semantics, however, which
break down in the presence of network partitions. A se-
ries of developments in partition-aware group management
lead to work by Briesemeister and Hommel [2], who intro-

duced the idea of a Neighborhood Service with which they
build local views of group membership. Neighborhood Ser-
vice resembles Hood in the sense that it allows membership
asymmetry. However, in Hood a neighbor list is not a view
of global group membership; there are no global group con-
cepts associated with Hood. Furthermore, data sharing in
Hood is fundamental to discovery; membership is defined by
nodes that pass a general filter, not simply active neighbors
within radio connectivity or, as in more recent work, those
meeting location requirements [14].

Reflective Memory (RM) systems are a form of shared
memory popular for parallel systems [10, 13], in which each
system’s memory is reflected into mirrors in other systems
memory. All writes to local memory are always pushed
into all mirrors. RM can support multiple-reader/multiple-
writer protocols and enforce a wide variety of cache con-
sistency mechanisms, typically employing specialized hard-
ware to do so. Hood reflection mechanisms are something
of a degenerate case of RM, where the consistency model is
extremely simplified by moving to a multiple-reader/single-
writer model. Furthermore, Hood reflection is not a push-
only model and does not enforce any cache coherence re-
quirements. Instead, it exposes both a push and pull in-
terface and chooses to employ only a best-effort coherence
strategy so that access to data would never be restricted.

In this sense, Hood is related to worm and epidemic al-
gorithms in their concept of eventual consistency [16, 11].
Such algorithms provide that, given enough time, all nodes
will eventually share a consistent view of certain data even in
the face of network loss or temporary partitions and without
the cost of stricter consistency guarantees. While a similar
philosophy is taken by Hood, its values are neither anony-
mous nor globally shared. Each value in Hood is inherently
identified with a single node, its origin, and a limited scope,
the node’s co-neighbors.

Hood is perhaps most similar to the Home Page model
of pFrags proposed by Butera [3] for paintable computers.
pFrags are process fragments that move from node to node
trying to achieve some goal. Each pFrag can write to a local
Home Page which it shares with other local pFrags, and
this Home Page is mirrored to some degree on neighboring
nodes. Besides the fact that pFrags endorse a distributed
computing model while this paper endorses a SPMD parallel
programming model, there are two main differences between
Home Pages and Hood. First, Hood only allows nodes to
write their own attributes, which live in a global namespace
so that neighboring nodes can reject attributes they don’t
recognize. Home Pages, on the other hand, can store any
type of data. Second, Hood allows the remote node to decide
which nodes and which data should be mirrored, whereas
Home Pages require each pFrag to decide which of its own
data will be shared with all other pFrags.

In this sense, Hood is also similar to Blackboard systems
[5], which are popular in AI, and tuple spaces like Linda [9],
which have become popular in distributed computing. In
both of these programming models, a process adds data to
a globally accessible repository and other processes choose
which data to read. Similar to Hood, the producer of the
data does not know who the consumers are. In Hood, how-
ever, the data is not anonymous but is inherently identified
with a single node, and all consumers do know the identity
of the producer. Furthermore, data remains on a blackboard
or in a tuple space independently of the originating process.

In Hood, in contrast, data changes with the state of the orig-
inating processes; it more closely resembles shared process
state than shared data.

Most recently, Abstract Regions uses a neighborhood ab-
straction based on that originally proposed by Hood [17].
This abstraction defines the relationship between discovery,
data sharing and reductions and has been used to implement
several sophisticated distributed algorithms.

10. SUMMARY AND CONCLUSIONS
While some distributed algorithms are oriented around

messaging protocols, many others are oriented around
neighborhoods and data sharing. The only programming
primitives available for sensor networks today, however,
are for supporting protocols. Applications that rely on
neighborhood-oriented algorithms should not have to reduce
those algorithms to protocols and data caches, but should
be able to design them directly on a neighborhood abstrac-
tion. This paper proposes such an abstraction and shows
that it captures the essence of the neighborhood concepts
needed by many existing applications.

Neighborhood concepts are being used in many of these
applications today, even explicitly so; Table 2 was partially
created by searching for the characters “neighb” in the code
repository. This is essential to supporting the claim that
a clean, well-defined neighborhood abstraction is needed.
All known existing neighborhood implementations are one-
hop neighborhoods and can all be decomposed into concepts
similar to those found in Hood: neighbor lists, filters, mir-
rors, reflections, and scribbles. This supports the claim that
Hood can be an answer to the aforementioned need for a
neighborhood abstraction.

The primary benefit of Hood over existing neighborhood
implementations is that it clearly defines the relationship be-
tween several concepts fundamental to neighborhoods, mem-
bership, data sharing, data caching, and messaging. All other
implementations fail 1) to dissociate data sharing from data
caching and 2) to integrate neighbor lists and caching with
messaging. In Hood, the first is achieved by using mirrors,
which allow attributes to be reflected over multiple different
neighbor lists without requiring coordination between the
different lists. The second is achieved by using filters, when
attributes are pushed, neighbor lists and caches are built up
from them, without intervention from or coordination with
application logic. This unified abstraction in Hood has been
shown through a case study to benefit the design, implemen-
tation, and modification of applications such as OTA that
already rely on neighborhood concepts.

Acknowledgements
This work is funded in part by the National Defense Science
and Engineering Graduate Fellowship, the DARPA NEST
contract F33615-01-C-1895, and Intel Research. Special
thanks to Matt Welsh for many thoughtful discussions and
insight into the nature of the Hood abstraction.

11. REFERENCES
[1] K. P. Birman. The process group approach to reliable

distributed computing. Communications of the ACM,
36(12):37–53, December 1993.

[2] Linda Briesemeister and Günter Hommel. Localized
Group Membership Service for Ad Hoc Networks. In

International Workshop on Ad Hoc Networking
(IWAHN), pages 94–100, AUG 2002.

[3] Bill Butera. Programming a Paintable Computer. PhD
thesis, MIT, February 2002.

[4] D. Chaiken, J. Kubiatowics, and A. Agarwal.
LimitLESS directories: A scalable cache coherence
scheme. In Proceedings of the 4th International
Conference on Architectural Support for Programming
Languages and Operating System (ASPLOS), 1991.

[5] D. D. Corkill. Blackboard Systems. AI Expert, pages
40–47, 1991.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next Century Challenges: Scalable Coordination in
Sensor Networks. In International Conference on
Mobile Computing and Networks (MobiCOM ’99),
Seattle, Washington, August 1999.

[7] Armando Fox and Eric A. Brewer. Harvest, Yield and
Scalable Tolerant Systems. In Workshop on Hot
Topics in Operating Systems, pages 174–178, 1999.

[8] David Gay, Phil Levis, Rob von Behren, Matt Welsh,
Eric Brewer, and David Culler. The nesC language: A
holistic approach to networked embedded systems. In
Programming Language Design and Implementation
(PLDI), June 2003.

[9] D. Gelertner. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[10] M. Jovanovic and V. Milutinovic. An Overview of
Reflective Memory. IEEE Concurrency, 7(2):56–64,
1999.

[11] Phil Levis and David Culler. Mate: a Virtual Machine
for Tiny Networked Sensors. In ASPLOS, October
2002.

[12] Dragos Niculescu and Badri Nath. Ad Hoc Positioning
System (APS). In GLOBECOM (1), pages 2926–2931,
2001.

[13] Sanjay Raina. Virtual Shared Memory: A Survey of
Techniques and Systems. Technical Report
CSTR-92-36, University of Bristol, 1, 1992.

[14] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent
Group Membership in Ad Hoc Networks. In 23rd
International Conference in Software Engineering
(ISCE), Toronto, Canada, May 2001.

[15] Chia Shen and Ichiro Mizunuma. RT-CRM:
Real-Time Channel-Based Reflective Memory. IEEE
Transactions on Computers, 49(11):1202–1214, 2000.

[16] J. F. Shoch and J. A. Hupp. The ”Worm” programs -
Early Experience with a Distributed Computation.
Communications of the ACM, 25(3):172–180, 1982.

[17] Matt Welsh and Geoff Mainland. Programming Sensor
Networks Using Abstract Regions. In The First
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI ’04), March 2004.

[18] Kamin Whitehouse. The Design of Calamari: an
Ad-hoc Localization System for Sensor Networks.
Master’s thesis, University of California at Berkeley,
2002.

